Hadoop

IT Trainings

Big Data: Learn how to make sense of your organization's complex data sets with our Big Data Training. Learning CHISRIN's Big Data courses and education will give you the tools you need to make intelligent business decisions in today's data-driven environment.

Android is a software platform for mobile devices. It's powered by a Linux kernel. Android was initially developed by Google and later by the Open Handset Alliance.

    a. Big Data – Hadoop Administration and Development:

  • Course Content:
  • Course Objective Summary
  • • Introduction to Big Data and Analytics
  • • Introduction to Hadoop
  • • Hadoop ecosystem - Concepts
  • • Hadoop Map-reduce concepts and features
  • • Developing the map-reduce Applications
  • • Pig concepts
  • • Hive concepts
  • • Sqoop concepts
  • • Flume Concepts
  • • Oozie workflow concepts
  • • Impala Concepts
  • • Hue Concepts
  • • HBASE Concepts
  • • ZooKeeper Concepts
  • • Real Life Use Cases

  • Reporting Tool
  • • Tableau

  • Reporting Tool
  • • Tableau
  • 1. Virtualbox/VM Ware
  • • Basics
  • • Installations
  • • Backups
  • • Snapshots
  • 2. Linux
  • • Basics
  • • Installations
  • • Commands

  • 3. Hadoop
  • • Why Hadoop?
  • • Scaling
  • • Distributed Framework
  • • Hadoop v/s RDBMS
  • • Brief history of hadoop
  • 4. Setup hadoop
  • • Pseudo mode
  • • Cluster mode
  • • Ipv6
  • • Ssh
  • • Installation of java, hadoop
  • • Configurations of hadoop
  • • Hadoop Processes ( NN, SNN, JT, DN, TT)
  • • Temporary directory
  • • UI
  • • Common errors when running hadoop cluster, solutions

  • 5. HDFS- Hadoop distributed File System
  • • HDFS Design and Architecture
  • • HDFS Concepts
  • • Interacting HDFS using command line
  • • Interacting HDFS using Java APIs
  • • Dataflow
  • • Blocks
  • • Replica

  • 6. Hadoop Processes
  • • Name node
  • • Secondary name node
  • • Job tracker
  • • Task tracker
  • • Data node

  • 7. Map Reduce
  • • Developing Map Reduce Application
  • • Phases in Map Reduce Framework
  • • Map Reduce Input and Output Formats
  • • Advanced Concepts
  • • Sample Applications
  • • Combiner

  • 8. Joining datasets in Mapreduce jobs
  • • Map-side join
  • • Reduce-Side join

  • 9. Map reduce – customization
  • • Custom Input format class
  • • Hash Partitioner
  • • Custom Partitioner
  • • Sorting techniques
  • • Custom Output format class

  • 10. Hadoop Programming Languages :-


  • I.HIVE
  • • Introduction
  • • Installation and Configuration
  • • Interacting HDFS using HIVE
  • • Map Reduce Programs through HIVE
  • • HIVE Commands
  • • Loading, Filtering, Grouping….
  • • Data types, Operators…..
  • • Joins, Groups….
  • • Sample programs in HIVE

  • II. PIG
  • • Basics
  • • Installation and Configurations
  • • Commands….
  • a.Android Programming with Java Basics
  • b.iPhone / iPad Programming with Objective C Basics.
  • c. Mobile Development Professional Combo